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We propose a general model explanation system (MES) for “explaining” the output of black box
classifiers. In this introduction we use the motivating example of a classifier trained to detect fraud
in a credit card transaction history. The key aspect is that we provide explanations applicable to a
single prediction, rather than provide an interpretable set of parameters. The labels in the provided
examples are usually negative. Hence, we focus on explaining positive predictions (alerts).

In many classification applications, but especially in fraud detection, there is an expectation of false
positives. Alerts are given to a human analyst before any further action is taken. Analysts often
insist on understanding “why” there was an alert, since an opaque alert makes it difficult for them to
proceed. Analogous scenarios occur in computer vision [10], credit risk [8], spam detection [6], etc.

Furthermore, the MES framework is useful for model criticism. In the world of generative models,
practitioners often generate synthetic data from a trained model to get an idea of “what the model is
doing” [5]. Our MES framework augments such tools. As an added benefit, MES is applicable to
completely non-probabilistic black boxes that only provide hard labels. In Section 3 we use MES to
visualize the decisions of a face recognition system.

Fraud detection example A simple example explanation is: “Today, there were two in person
transactions in the USA, followed by $1700 in country X.” MES would output “(xi ≥ 2) ∧ (xj ≥
1700)” for the appropriate features i and j. The former could be generated via a NLG module [14].

Explanation vs. interpretability We assume the paradigm where prediction accuracy is of
paramount importance, but explanation is also important. Therefore, we are not willing to give up
any predictive accuracy for explanation. There is a long history of building models that are “inter-
pretable” [1; 20]; such as, (small) decision trees [13] and sparse linear models [19]. MES augments
black box predictions with explanations, as the best prediction system may not be “interpretable.”

Historically, this dilemma has led to two approaches: 1) the “interpretable” models approach, com-
mon in scientific discovery/bioinformatics [15], and 2) the accuracy-focused approach, common in
computer vision with methods like deep learning, k-NNs [2], and SVMs [16]. The downside of the
interpretable approach is seen in machine learning competitions, where the winning methods are
typically nonparametric, or have a very large number of parameters (e.g., deep learning) [4].

MES has elements of both approaches. We do not aim to succinctly summarize how the model
“works in general,” but only seek explanations of individual cases. Although the distinction is
subtle, explanation is a much easier task than explaining the entire model. MES utilizes this weaker
requirement to augment black box models with explanations without affecting accuracy.

1 Formal setup

Consider a black box binary classifier f that takes a feature vector x ∈ X = RD and provides
a binary label: f ∈ X → {0, 1}. In the examples above, explanations are Boolean statements
about the feature vector. In effect, an explanation E is a function from X to {0, 1}. The mapping
E∗ ∈ X → E finds the best explanation from the set of possible explanations E ⊂ X → {0, 1}. In
Section 1.1 we describe a set of desiderata on E∗. We define that: 1) E contains a “null explanation”
E0(x) := 1; 2) the set F := {x ∈ X |f(x) = 1}; 3) an explanation E is true at x when E(x) = 1.
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Dependence on input distribution Discriminative models, even when probabilistic, do not learn
the input feature distribution, which we refer to as p [11]. However, they can be augmented by
learning an input feature distribution “on the side.” An interesting twist of MES is that it does
depend on the input distribution even when explaining discriminative models.

1.1 Desired properties

Before describing our desiderata on E∗, we first define some key terms: Eligibility: An explanation
is eligible if it increases the probability that the classifier alerts: Explanation E ∈ E is eligible if
P (f(x) = 1|E(x) = 1) ≥ P (f(x) = 1), where x ∼ p; and we refer to all eligible explanations as
E ′ := {E ∈ E|E is eligible}. Note that f and E are deterministic functions of the input x; we are
marginalizing over the inputs p(x). Generality: An explanation’s generality G is the probability
of it being true (among x in F): G(E) := P (E(x) = 1|f(x) = 1). Accuracy: An explanation’s
accuracy A is the probability the classifier alerts given the explanation is true: A(E) := P (f(x) =
1|E(x) = 1). Validity: An explanation E is valid at x if it is eligible and true at x (E(x) = 1).

To summarize, eligibility is a property ofE that does not depend on x, although it does depend on the
marginal p(x). Whether an explanation E is true/valid requires knowledge of x. In a classification
context, accuracy A and generality G are analogous to precision and recall, respectively.

We contend that a sensible E∗(x) mapping returns the most preferable explanation that is valid at x:
E∗(x) ∈ maxE∈E′E such that E(x) = 1 , (1)

where the max is a preference relation max. We now list the desired properties of the preference
relation (E ,-): 1) The set E is a preference relation (totality and transitivity). 2) If two valid at x
explanations have equal accuracy then the one with more generality is preferred: IfG(E1) > G(E2)
and A(E1) = A(E2) then E2 ≺ E1. 3) If two valid at x explanations have equal generality then
the one with more accuracy is preferred: If A(E1) > A(E2) and G(E1) = G(E2) then E2 ≺ E1.
Requiring generality is useful since useless explanations like xi ∈ [a, a+ ε] often have accuracy 1.

This gives two derived properties: 1) Any valid at x explanationE not independent of f is preferable
to the null explanation E0: If E 6= E0 is valid at x and E 6⊥⊥ f , then E∗(x) 6= E0. 2) If the decision
rule f is in E , then it is preferable to any other explanation: If f ∈ E then E∗(x) = f for all x ∈ F .

1.2 Explanation with a scoring function

A clear way to setup the explanation problem is to use a scoring function:

E∗(x) ∈ argmax
E∈E′

S(A(E), G(E)) such that E(x) = 1 , where
∂S

∂A
> 0 ,

∂S

∂G
> 0 . (2)

Any E∗ defined via (2) obeys (1) and the desiderata on (E ,-). The converse is also true assuming
a continuity condition on E [12, p. 104]; this justifies the scoring paradigm (2). Note that (2) only
cares about the relationship between E and f ; we do not care if E(x) directly predicts the data.

We describe three clear examples for S that obey (2) and are normalized on [0, 1] for eligible expla-
nations. Being normalized, regardless of the constant background rate P (f), means the score S is
suitable as an explanation quality score. We get similar results for the three scores: mutual informa-
tion S = MI(E; f)/H[f ], correlation S = Corr [E, f ], and covariance S = Cov [E, f ] /Var [f ].

Comparison with decision trees Although it may appear we are merely “reinventing decision
trees,” there are key differences between MES and a decision tree. At a high level, MES is explaining
why a decision was made on a single input, while decision trees aim to make the entire model easy to
understand. More precisely, although we use simple decision functions in E , E∗ may be arbitrarily
complex. By contrast, simple decision trees cannot match any black box classifier exactly. If the
decision tree is not the top performing model, we must sacrifice performance for interpretability.
MES augments any model with an explanation, alleviating any need to sacrifice performance.

2 Linear classifier example

Before moving on to general black boxes, we first demonstrate MES when the input density p(x) is
Gaussian and the decision boundary is linear, which includes logistic regression, perceptrons, and
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Figure 1: Linear Gaussian example of
MES in 2D (x ∈ R2). For illustration,
we plot explanations for all inputs x ∈
F . The black line is the decision bound-
ary of f . The blue ellipse represents the
Gaussian p(x). Left: Explanations of
the E(x) = I{x0 ≥ a} form where the
heatmap color represents a. Right: Same
as left except that E(x) = I{x1 ≥ a}.
When x0 < −1 the explanation is
E(x) = I{x1 ≥ 0.5} and for x0 ≥ 2 it
is E(x) = I{x0 ≥ 2}. For x0 ∈ [−1, 2]
it is E(x) = I{x0 ≥ a} with a = x0.

linear SVMs. We use axis aligned thresholds (i.e., half spaces) as the explanations. In equations:

p(x) = N (µ,Σ) , f(x) = I
{
w>x + b ≥ 0

}
, E =

⋃D
i=1

{
I
{
xi Q a

}
, ∀a ∈ R

}
. (3)

Next, we solve (2) for each i ∈ 1:D and use the axis with the best optimum. We use the transform

x̃ := [ui w]
>

x + [−a b]
> ∈ R2 , (4)

where ui represents a 1-of-k encoding. Notice that now P (E, f) = P (sign(x̃1), sign(x̃2)). Since x̃
is distributed by a bivariate Gaussian, P (E, f) is computed with one bivariate normal CDF and two
univariate normal CDF calls. After computing P (E, f) evaluating the score S is straightforward.

Efficient precomputation When using mutual information as the score function S, the score func-
tion is convex w.r.t. the threshold a in the linear Gaussian case. Therefore, on each axis i we pre-
compute the optimal threshold ai via bisection search. Later, when finding an explanation of the
form E(x) = I{xi ≤ a}, we use a = max(xi, ai); we use a similar min operation for I{xi ≥ a}.
We then compare the scores for the explanation on each axis and report the axis (and corresponding
threshold a) with the highest score. This fast approach scales linearly in dimension D.

Illustrative example In order to visualize every possible input we present a linear example of
MES in a 2D feature space (x0 and x1). We use mutual information as the score S in Fig. 1. The
reader can verify visually that MES finds explanations that have high accuracy, generality, or both.

3 Black box models

In this section we use simple Monte Carlo (MC) methods to extend Section 2 to black box models.
We merely require the classifier f be queryable at an arbitrary input x and that we can obtain samples
from the input density p(x). We retain the axis aligned explanations from (3) for E .

Although we can optimize a MC estimate of any scoring function, we use a scoring function equiv-
alent to the covariance in this section. This allows us to provide worst-case guarantees about the
closeness of the MC explanation to the true optimal explanation. In this section we use:

S(E) = P (E|f = 1)− P (E|f = 0) = G(E)
(
1− (P (f)−1 − 1)−1(A(E)−1 − 1)

)
. (5)

The reader can verify that (5) satisfies the requirements in (2) for eligible explanations (P (f) <
A(E)). First, consider explanations of the form E(x) = I{xi ≤ a}. Then, we compute S(E) using

P (xi ≤ a|f = 1)− P (xi ≤ a|f = 0) = CDFxi
(a|f = 1)− CDFxi

(a|f = 0) =: F (a)−H(a) .

We refer to S(E) as the Kolmogorov score since maxa |S(E)| is known as the Kolmogorov distance
between p(xi|f = 1) and p(xi|f = 0). Utilizing the law of total probability, one can show that
S(E) ∝ Cov [E, f ] in the case of binary variables (E and f ) and constant P (f). Additionally, using
Bayes’ rule and the law of total probability, one can show that E is eligible iff S(E) ≥ 0.

We approximate (5) using Sn(a) := Fn(a) − Hn(a), where Fn and Hn are empirical CDFs of F
and H from n MC samples. Sampling from p(xi|f = 1) and p(xi|f = 0) is made efficient by
sampling from p(x) and rejection sampling with f . Next, we provide an upper confidence bound
(UCB) on the suboptimality e of the approximate explanation threshold â vs the exact threshold a∗:

e := S(a∗)− S(â) ≥ 0, a∗ ∈ argmaxaS(a), â ∈ argmaxaSn(a) . (6)
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Figure 2: Far Left: A modified face where the classifier correctly predicts Chavez. Left: The mean removed
input face leading to a prediction of Bush (gray=0, white>0, black<0). Right: Eigenface 5, which MES
selects for the explanation. Far Right: The Hadamard product of the input face and eigenface 5. MES expla-
nation: This eigenface product has net white balance ≥1%. Think of the white areas as being the parts of the
image that contribute to the SVM predicting Bush, and the dark areas as though the Bush prediction is made in
spite of them. Eigenface 5 sees dark eyebrows, shading above the eyes/under the nose, and a dark open mouth.

Utilizing Sn(a
∗)− Sn(â) ≤ 0 and then adding/canceling (Sn(a

∗) + Sn(â)) we bound (6):
e ≤ (S(a∗)− Sn(a

∗)) + (Sn(â)− S(â)) ≤ 2maxa|Sn(a)− S(a)| . (7)
Then utilizing maxa |Sn(a) − S(a)| ≤ maxa |Fn(a) − F (a)| +maxa |Hn(a) −H(a)|, the union
bound, and the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [3; 9] we get that:

P (e ≥ ε) ≤ 4 exp(−2n(ε/4)2) = 4 exp(−nε2/8) =: δ0 . (8)
This bounds the suboptimality when searching on a single axis. When searching D axes in two
directions (≤ and ≥ explanations) we use a Bonferroni correction for δ0 = δ/(2D). This allows us
to reuse MC samples for searches on each axis. Therefore, to obtain a score suboptimality ε with
confidence δ we need n = d8 log(8D/δ)/ε2eMC samples.

During implementation, we precompute the optimal thresholds a as in the linear Gaussian case, but
instead of doing a bisection search we merely store the cumulative maximum of Sn. During test, we
find the optimal explanation on an axis by evaluating the precomputed cumulative maximum. Then,
as in the linear case, we compare the best scores found on each axis.

Face recognition example We now demonstrate the black box MES implementation on the sci-kit
learn demo “Faces recognition example using eigenfaces and SVMs” [7; 17]. The faces are reduced
to dimensionD=150 from 50×37=1,850 using PCA [18]. Then 966 training examples are plugged
into a (RBF kernel) multi-class SVM for classifying the faces as one of seven political figures. When
explaining a classification of face k (Bush) we convert the SVM to a binary black box, informally
as f(x) = I{SVM(x) = k}. We use ε = 0.025 and δ = 0.05 implying n = 129,099. Induced from
the assumptions of PCA, we use a standard multivariate Gaussian for the input density p(x).

In Fig. 2 MES explains why the SVM classifies Hugo Chavez as George W Bush. In the far right
image we see the classifier is utilizing the black arc under his teeth and the dark area around his right
eye. In most training photos of Bush he has an open (dark) mouth and a lot of shading above his
eyes. When we subtract the (normalized) eigenface from the original image, the classifier correctly
predicts the face as Chavez. The corrected face (far left) has a lighter right eye and whiter smile.

4 Conclusions

We have presented a general framework for explaining black box models. In doing so, we have made
clear the subtle distinction between interpretable models and augmentation through explanation. The
framework alleviates the tension between performance and interpretability in suitable use cases.

First, we proposed and implemented an efficient algorithm using bisection search for linear classi-
fiers. This algorithm works well in high dimensions as its cost scales linearly in input dimension
D. We then demonstrated a MC algorithm (with accuracy guarantees) that provides explanations on
(nonlinear) black box classifiers. The methodology was then used to explain, and then correct, why
a classifier from a standard face recognition demo misclassified a seemingly standard test input.
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